
A Hardware Engine For Generating Number-Theoretic Sequences
���������������� �������������������
 ���������
�������
��	������������

�����������������������������
���
��

Recon�gurable Computing allows developers to design, and re-design,
hardware circuitry as many times as they like. There have been many
recent advancements in this �eld, allowing for quick hardware design
to speed up speci�c software tasks [4].
Open-source hardware design tools make this process more accessible
[2]. We used Chisel, a high-level hardware description language, to
build a hardware accelerator for speci�c functions.

This accelerator targets the highly con�gurable, open-source Rocket
Chip processor, which implements the RISC-V open ISA [1]. The
instruction above is customized to send sequence-generating
constraints to our accelerator when called.

	��
���
�������
�
�����
�����������

One task that can bene�t from hardware acceleration is Combinatorial
Sequence Generation. These generated sequences of binary strings
have applications in software and hardware [3].
Each string describes a way to choose items from a set given certain
constraints (if bit i is high, item i is selected). Together, a sequence of
strings enumerates all possible selections for a set of constraints.

The three sequences above demonstrate the cool, cooler, and coolest
rules for sequence generation, for strings of di�erent lengths and
weight ranges [8]. These rules can be implemented in constant
amortized time.
The three rules can also be implemented statelessly, at a cost in speed
[5]. However, this loss can be overcome by converting these software
methods into hardware.

��������������
��
��������

����
�������������������
��

Our hardware accelerator implements the cool, cooler, and coolest sequence generating rules. It receives custom instructions from the Rocket Chip, containing the rule to
use, the string length to generate, and the weight ranges allowed. We also created two methods of string generation: either returning the next string in a sequence to the
CPU, or saving a full sequence of strings to a section of the cache.

Since our instructions use register addressing, we limited the length of possible strings to 32 or less. On 64-bit systems this could easily be extended.

At left is the layout of the chip and our accelerator:
 Command Control receives chip input and handles accelerator functionality.
 Memory control interfaces with the Rocket Chip's cache to send strings there when called.
 The String Building unit controls actual string generation for a sequence.

We implemented our accelerator with the lowRISC variant of the Rocket Chip on the Nexys A7
FPGA board. We also tested it on the Rocket Chip with a cycle-accurate simulator, Verilator. In
simulations, we measured speedup in our accelerator as compared to the software version of
the 3 string-generating functions and both return styles. We tested string lengths of 2, 4, 8, 16,
and 24 for immediate-response functions, and 2, 4, 8, and 13 for memory-response functions.

�������������������
���

The cool, cooler, and coolest functions all show
speedup but not to the same extent. This is because
the three functions grow progressively more
complex, increasing latency in software. However, all
the functions take the same amount of time in
hardware: 1 cycle to generate a string, and usually
several cycles to transfer control back from the
accelerator to the CPU.

Speedup in memory-response functions is around
twice as high as with immediate-response functions,
which is explained by the removal of costly synchro-
nizing cycles between hardware and software. With
memory-response functions, strings are streamed to
memory as fast as the cache can accept them.

The speedup found for every function type indicates
the e�ectiveness of hardware acceleration for
mathematically interesting successor functions. Our
approach demonstrates the e�ciency of using an
open-source toolchain to accelerate speci�c software
problems. We also see this work as a well-document-
ed contribution to a growing collection of accelera-
tors for RISC-V processors.

����������

[1] Asanović, K., Avizienis, R., Bachrach, J., Beamer, S.,
Biancolin, D., Celio, C., Cook, H., Dabbelt, D., Hauser, J., Izraelevitz,
A., Karandikar, S., Keller, B., Kim, D., Koenig, J., Lee, Y., Love, E., Maas,
M., Magyar, A., Mao, H., Moreto, M., Ou, A., Patterson, D. A.,
Richards, B., Schmidt, C., Twigg, S., Vo, H., and Waterman, A. 2016.
The Rocket Chip Generator. Technical Report. University of
California, Berkeley.
[2] Bachrach, J., Vo, H., Richards, B., Lee, Y., Waterman, A., Avižienis,
R., Wawryzynek, J., and Asanović, K. 2012. Chisel: Constructing
hardware in a Scala embedded language. In DAC Design
Automation Conference (June 2012). 1212-1221.
[3] Golomb, S. W. 2017. Shift Register Sequences, 3rd revised ed.
World Scienti�c, 2017.
[4] Hauck, S., and DeHon, A. 2010. Recon�gurable Computing: The
Theory and Practice of FPGA-Based Computation. ISSN. Elsevier
Science.
[5] Knuth, D. 2005. The Art of Computer Programming, Volume 4,
Fascicle 3. Pearson Education.
[6] Mao, H. 2017. Hardware acceleration for memory to memory
copies. Master’s Thesis. University of California, Berkeley.
[7] Schoeberl, M. 2019. Digital Design with Chisel. Kindle Direct
Publishing.
[8] Stevens, B., and Williams, A. 2014. The coolest way to generate
binary strings. Theory of Computing Systems 54, 4 (May 2014),
551-557

�

��
������������������
���

	�
������������������
���

